| Write your name here Surname | Other name | es | | | | | |---|---------------|------------------|--|--|--|--| | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | | | | | Chemistry Advanced Unit 6: Chemistry Laboratory Skills II | | | | | | | | Tuesday 27 January 2015 – Afternoon Time: 1 hour 15 minutes Paper Reference WCH06/01 | | | | | | | | Candidates may use a calcula | tor. | Total Marks | | | | | # **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ### Information - The total mark for this paper is 50. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ PEARSON | | Answer ALL the questions. Write your answers in the spaces provided | • | |----|---|--------| | | A white solid, A , has one metal cation, and an anion containing two non-metallic ele | ments. | | | (a) A flame test is carried out on A . | | | | (i) Describe how you would carry out this flame test in the laboratory. | (0) | | | | (3) | •• | | | | | | | | | | | | | | | | | (ii) A yellow flame is seen. Give the formula of the metal ion present. | (1) | | | | (1) | | | (b) Solid A dissolves in water to form a colourless solution. | | | | This solution decolorises a dilute aqueous solution of iodine. | | | | Dilute hydrochloric acid is added to a fresh solution of A . | | | | A very pale yellow precipitate, B , forms slowly and an acidic gas, C , is given off. | | | | Gas C turns acidified sodium dichromate(VI) from orange to green. | | | | (i) Identify, by name or formula, the precipitate B and the gas C . | (2) | | | | (2) | | re | ecipitate, B | | | a | s, C | | | | | | | | | | | | | | | | | | | (iv) Give the formula of compound A . | (1) | |--|-----| | (iii) Give the name of the anion in compound A . | (1) | | (iii) Give the name of the anion in compound A | | **2** A white solid, \mathbf{D} , is formed when ethanoyl chloride is added to a concentrated solution of ammonia. The molecular formula of \mathbf{D} is C_2H_5ON . When solid **D** is heated with excess aqueous sodium hydroxide solution, ammonia gas is given off and a solution, **E**, is formed. (a) Ammonia has a distinctive smell. Give **two** other tests, each of a different type, which could be used to show the presence of ammonia. Give the result of each test. (3) | Test 1 | |--------| | | | | | | Test 2 - (b) Excess dilute sulfuric acid is added to solution **E** and an organic liquid, **F**, is distilled from the mixture. - (i) Draw a labelled diagram of the apparatus used for this distillation. (2) | (ii) | Addition of pure liquid F to aqueous sodium carbonate gives effervescence. | | |-----------------|---|--------| | | Identify liquid F by name or formula. | (1) | | (c) (i) | Give the name and displayed formula of solid D . | (2) | | ame
isplayed | | | | Брійуси | Torrida | | | | | | | | | | | | | | | (ii) | Write an equation for the formation of solid D from ethanoyl chloride and concentrated ammonia solution. State symbols are not required. | (1) | | | | (1) | | | | | | | | | | | | | | | (Total for Question 2 = 9 m | narks) | **3** This is an experiment to determine the oxidation number of vanadium in a purple solution, **T**, of a vanadium compound. ## **Preparation of solution T** Solution **T** was formed when 25.00 cm³ of a 0.100 mol dm⁻³ solution of sodium vanadate(V), NaVO₃, was reduced by heating with excess zinc and dilute sulfuric acid. When the reduction was complete, the yellow NaVO₃ solution had turned purple. ### **Titration of solution T** The mixture was filtered through glass wool, directly into 50.00 cm³ of 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄, solution. Further potassium manganate(VII) solution of the same concentration was added from a burette to this reaction mixture, which was kept at a temperature of about 80°C. The end point is reached when all the vanadium ions had been oxidized back into vanadate(V) ions by the manganate(VII) ions. The end point occurred when a further 25.00 cm³ had been added. (a) (i) Draw a diagram of the apparatus for carrying out the titration, while **keeping** the titration mixture at about 80°C. (2) | (ii) What is removed from the reaction mixture by filtering through glass wool? | (1) | |---|-----| | (iii) Suggest why the mixture is filtered directly into potassium manganate(VII) solution before carrying out the rest of the titration. | (1) | | (iv) Explain why an indicator is not required for this titration. | (1) | | (b) (i) Calculate the number of moles of vanadate(V) ions, VO ₃ , in 25.00 cm ³ of a 0.100 mol dm ⁻³ solution of sodium vanadate(V), NaVO ₃ . | (1) | | (ii) Calculate the total volume of potassium manganate(VII) solution. Hence the total number of moles of potassium manganate(VII) used to oxidize the purple vanadium solution, T . | (2) | | | | | (iii) Complete the half equation for the reduction of manganate(VII) ions to | Э | |--|---| | manganese(II) ions. | | (1) $$MnO_4^- + \dots H^+ + \dots H_2O$$ (iv) By considering either the number of electrons transferred or by using the changes in oxidation numbers, calculate the oxidation number of vanadium in the purple solution, **T**. You **must** show your working. (3) (c) In acidic solution, the vanadate ions, VO_3^- are changed into VO_2^+ . Write an ionic equation for this reaction. State symbols are not required. (1) | (d) Some standard electrode potentials of tin and va | anadium are given below. | | |---|---------------------------------|------------| | $Sn^{2+}(aq) Sn(s)$ | -0.14 V | | | $V^{2+}(aq) V(s)$ | –1.18 V | | | $V^{3+}(aq), V^{2+}(aq) Pt$ | -0.26 V | | | $[VO^{2+}(aq) + 2H^{+}(aq)], [V^{3+}(aq) + H_2O(I)] Pt$ | +0.34 V | | | $[VO_2^+(aq) + 2H^+(aq)], [VO^{2+}(aq) + H_2O(I)] Pt$ | +1.00 V | | | Use these values to predict the lowest oxidation | | | | produced from VO ₂ using tin as the reducing age | | 2) | | | (| ~) | (Total for Question 3 = 15 mark | | - **4** Cholesteryl benzoate was the first liquid crystal to be discovered. It can be prepared by the following procedure. - **Step 1** Dissolve 1.0 g of cholesterol in 3 cm³ of pyridine in a conical flask. - **Step 2** Add 0.40 cm³ of benzoyl chloride. - **Step 3** Heat the mixture on a steam bath for about 10 minutes. - **Step 4** Cool the mixture, and add 15 cm³ of methanol. - **Step 5** Collect the solid cholesteryl benzoate by suction filtration. Rinse the flask and the crude crystals with a little cold methanol. - **Step 6** Recrystallize the cholesteryl benzoate using ethyl ethanoate as the solvent. Some physical data for the chemicals involved are shown below. | | Molar mass
/ g mol ⁻¹ | Density
/ g cm ⁻³ | Melting
temperature
/ K | Boiling
temperature
/ K | |----------------------|-------------------------------------|---------------------------------|-------------------------------|-------------------------------| | Cholesterol | 386.7 | | | 633 | | Benzoyl chloride | 140.6 | 1.21 | | 470 | | Cholesteryl benzoate | 490.8 | | 423 | | | Pyridine | 79.1 | | | 388 | | Ethyl ethanoate | 88.1 | | 190 | 350 | (a) Suggest the apparatus you would use to measure the volume of benzoyl chloride. (1) (b) The warning symbols on a bottle of benzoyl chloride are shown below. Write the meaning of each symbol in the space provided. (2) | (c) | 1 mol of cholesterol reacts with 1 mol of benzoyl chloride to form 1 mol of cholesteryl benzoate. | | |-----|---|-----| | | (i) Determine which reactant is in excess by calculating how many moles of cholesterol and of benzoyl chloride are used in the preparation. | (3) | | | | | | | (ii) Calculate the percentage yield when 0.65 g of cholesteryl benzoate is obtained. | (2) | | (d) | Suggest how the mixture is cooled in Step 4 . | (1) | | (e) | Suggest why methanol is added to the cooled mixture in Step 4 . | (1) | | | | | | | (5) | |--|---| g) How would you show that the recrystallized chole
are purer than the crude crystals obtained in Step | 5 ? | | y) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | steryl benzoate crystals in Step 6
5 ? | | g) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | 5 ? | | I) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | 5 ? | |) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | 5 ? | | g) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | 5 ? | | I) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | (2) | | J) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | (2) (Total for Question 4 = 17 marks) | | n) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step | (2) (Total for Question 4 = 17 marks) | # The Periodic Table of Elements | 6 8 | 6 0 0 m | 9 5 0 5 | 6. L 0 8 | 5 con | ε. σ ε 4 | [222]
Rn
radon
86 | | |------------|---------------------------|---|--------------------------------------|--|---|--|--| | 0 (8) | 4.0
He helium 2 | 20.2
Ne neon 10 | 39.9
Ar
argon
18 | 83.8
Kr
krypton
36 | Xe xenon 54 | [222]
Rn
radon
86 | rted | | 7 | (17) | 19.0 F fluorine 9 | 35.5
Cl
chlorine
17 | 79.9 Br bromine 35 | 126.9

 iodine
 53 | [210] At astatine 85 | been repo | | 9 | (16) | 16.0
O
oxygen
8 | 32.1
S
sulfur
16 | 79.0
Se
selenium
34 | 127.6 Te tellurium 52 | [209] Po polonium 84 | 116 have
ıticated | | 2 | (15) | 14.0
N
nitrogen
7 | 31.0 P | 74.9 As arsenic 33 | Sb
antimony
51 | 209.0
Bi
bismuth
83 | tomic numbers 112-116 hav
but not fully authenticated | | 4 | (14) | 12.0
C
carbon
6 | 28.1
Si
silicon | 72.6
Ge
germanium
32 | 118.7
Sn
tin
50 | 207.2 Pb tead 82 | atomic nur
but not fu | | 8 | (13) | 10.8
B
boron
5 | 27.0
Al
aluminium
13 | 69.7
Ga
gallium § | 114.8
In
indium
49 | 204.4 Tl thallium 81 | Elements with atomic numbers 112-116 have been reported
but not fully authenticated | | | | | (12) | 65.4 Zn zinc 30 | 112.4 Cd cadmium 48 | 200.6
Hg
mercury
80 | Elem | | | | | (11) | 63.5
Cu
copper
29 | 107.9
Ag
silver
47 | 197.0
Au
gold
79 | Rg
Rg
entgenium
111 | | | | | (10) | 58.7
Ni
nickel
28 | 106.4 Pd palladium 46 | 195.1
Pt
platinum
78 | [268] [271] [272] | | | | | (6) | 58.9
Co
cobalt
27 | Rh
rhodium
45 | 192.2
 Ir
 iridium
 77 | Mt Mt lost | | | 1.0 H hydrogen | | (8) | 55.8
Fe
iron
26 | Ru
ruthenium
44 | 190.2
Os
osmium
76 | [277] Hs hassium n | | | | | (7) | 54.9
Mn
manganese
25 | | Re
Re
rhenium
75 | [264] Bh bohrium 107 | | | | nass
Iol | (9) | 52.0
Cr
chromium r
24 | 95.9 [98] Mo Tc molybdenum technetium 42 43 | 183.8
W
tungsten
74 | [266] Sg seaborgium 106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | (5) | 50.9 52.0 V Cr vanadium chromium 23 24 | 92.9 Nb niobium n | 180.9 Ta tantalum 73 | [262] Db dubnium s 105 | | | | relativ
ator
atomic (| (4) | 47.9 Ti titanium | 91.2 Zr zirconium 40 | 178.5
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | | | (3) | Sc
scandium
21 | 88.9 Y yttrium 39 | 138.9
La*
lanthanum
57 | [227] Ac* actinium n 89 | | 2 | (2) | 9.0
Be
beryllium
4 | 24.3
Mg
magnesium
12 | 40.1 Ca calcium 20 | 87.6
Sr
strontium
38 | 137.3
Ba
barium la | [226] Ra radium 88 | | - | (1) | 6.9
Li
lithium
3 | 23.0
Na
sodium | 39.1
K
potassium
19 | 85.5 Rb rubidium 37 | Cs
Cs
caesium
55 | [223] Fr francium 87 | | | | | | | | | | ^{*} Lanthanide series ^{*} Actinide series | | 144 | [147] | 150 | 152 | 157 | 159 | 163 | 165 | 167 | 169 | 173 | 175 | |------|--------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|------------| | ž | ъ | Pm | Sm | Eu | В | Ъ | ò | 운 | Ę | Ę | Х | Ľ | |)eod | minm | promethium | samarinm | europium | gadolinium | terbium | dysprosium | holmium | erbium | thulium | ytterbium | lutetium | | | 9 | 61 | 62 | 63 | 64 | 65 | 99 | 29 | 68 | 69 | 70 | 71 | | ı | 238 | [237] | [242] | [243] | [247] | [245] | [251] | [254] | [253] | [526] | [254] | [257] | | | _ | ď | Pu | Am | E
S | 쌇 | ង | Es | Fm | ΡW | 8 | ځ | | _ | raninm | neptunium | plutonium | americium | aurium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | lawrencium | | | 92 | 93 | 94 | 95 | 96 | 67 | 86 | 66 | 100 | 101 | 102 | 103 |