Write your name here Surname	Other name	es				
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number				
Chemistry Advanced Unit 6: Chemistry Laboratory Skills II						
Tuesday 27 January 2015 – Afternoon Time: 1 hour 15 minutes Paper Reference WCH06/01						
Candidates may use a calcula	tor.	Total Marks				

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

	Answer ALL the questions. Write your answers in the spaces provided	•
	A white solid, A , has one metal cation, and an anion containing two non-metallic ele	ments.
	(a) A flame test is carried out on A .	
	(i) Describe how you would carry out this flame test in the laboratory.	(0)
		(3)
••		
	(ii) A yellow flame is seen. Give the formula of the metal ion present.	(1)
		(1)
	(b) Solid A dissolves in water to form a colourless solution.	
	This solution decolorises a dilute aqueous solution of iodine.	
	Dilute hydrochloric acid is added to a fresh solution of A .	
	A very pale yellow precipitate, B , forms slowly and an acidic gas, C , is given off.	
	Gas C turns acidified sodium dichromate(VI) from orange to green.	
	(i) Identify, by name or formula, the precipitate B and the gas C .	(2)
		(2)
re	ecipitate, B	
a	s, C	

(iv) Give the formula of compound A .	(1)
(iii) Give the name of the anion in compound A .	(1)
(iii) Give the name of the anion in compound A	

2 A white solid, \mathbf{D} , is formed when ethanoyl chloride is added to a concentrated solution of ammonia. The molecular formula of \mathbf{D} is C_2H_5ON .

When solid **D** is heated with excess aqueous sodium hydroxide solution, ammonia gas is given off and a solution, **E**, is formed.

(a) Ammonia has a distinctive smell. Give **two** other tests, each of a different type, which could be used to show the presence of ammonia. Give the result of each test.

(3)

Test 1

Test 2

- (b) Excess dilute sulfuric acid is added to solution **E** and an organic liquid, **F**, is distilled from the mixture.
 - (i) Draw a labelled diagram of the apparatus used for this distillation.

(2)

(ii)	Addition of pure liquid F to aqueous sodium carbonate gives effervescence.	
	Identify liquid F by name or formula.	(1)
(c) (i)	Give the name and displayed formula of solid D .	(2)
ame isplayed		
Брійуси	Torrida	
(ii)	Write an equation for the formation of solid D from ethanoyl chloride and concentrated ammonia solution. State symbols are not required.	(1)
		(1)
	(Total for Question 2 = 9 m	narks)

3 This is an experiment to determine the oxidation number of vanadium in a purple solution, **T**, of a vanadium compound.

Preparation of solution T

Solution **T** was formed when 25.00 cm³ of a 0.100 mol dm⁻³ solution of sodium vanadate(V), NaVO₃, was reduced by heating with excess zinc and dilute sulfuric acid.

When the reduction was complete, the yellow NaVO₃ solution had turned purple.

Titration of solution T

The mixture was filtered through glass wool, directly into 50.00 cm³ of 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄, solution.

Further potassium manganate(VII) solution of the same concentration was added from a burette to this reaction mixture, which was kept at a temperature of about 80°C. The end point is reached when all the vanadium ions had been oxidized back into vanadate(V) ions by the manganate(VII) ions.

The end point occurred when a further 25.00 cm³ had been added.

(a) (i) Draw a diagram of the apparatus for carrying out the titration, while **keeping** the titration mixture at about 80°C.

(2)

(ii) What is removed from the reaction mixture by filtering through glass wool?	(1)
(iii) Suggest why the mixture is filtered directly into potassium manganate(VII) solution before carrying out the rest of the titration.	(1)
(iv) Explain why an indicator is not required for this titration.	(1)
(b) (i) Calculate the number of moles of vanadate(V) ions, VO ₃ , in 25.00 cm ³ of a 0.100 mol dm ⁻³ solution of sodium vanadate(V), NaVO ₃ .	(1)
(ii) Calculate the total volume of potassium manganate(VII) solution. Hence the total number of moles of potassium manganate(VII) used to oxidize the purple vanadium solution, T .	(2)

(iii) Complete the half equation for the reduction of manganate(VII) ions to	Э
manganese(II) ions.	

(1)

$$MnO_4^- + \dots H^+ + \dots H_2O$$

(iv) By considering either the number of electrons transferred or by using the changes in oxidation numbers, calculate the oxidation number of vanadium in the purple solution, **T**.

You **must** show your working.

(3)

(c) In acidic solution, the vanadate ions, VO_3^- are changed into VO_2^+ . Write an ionic equation for this reaction. State symbols are not required.

(1)

(d) Some standard electrode potentials of tin and va	anadium are given below.	
$Sn^{2+}(aq) Sn(s)$	-0.14 V	
$V^{2+}(aq) V(s)$	–1.18 V	
$V^{3+}(aq), V^{2+}(aq) Pt$	-0.26 V	
$[VO^{2+}(aq) + 2H^{+}(aq)], [V^{3+}(aq) + H_2O(I)] Pt$	+0.34 V	
$[VO_2^+(aq) + 2H^+(aq)], [VO^{2+}(aq) + H_2O(I)] Pt$	+1.00 V	
Use these values to predict the lowest oxidation		
produced from VO ₂ using tin as the reducing age		2)
	(~)
	(Total for Question 3 = 15 mark	

- **4** Cholesteryl benzoate was the first liquid crystal to be discovered. It can be prepared by the following procedure.
 - **Step 1** Dissolve 1.0 g of cholesterol in 3 cm³ of pyridine in a conical flask.
 - **Step 2** Add 0.40 cm³ of benzoyl chloride.
 - **Step 3** Heat the mixture on a steam bath for about 10 minutes.
 - **Step 4** Cool the mixture, and add 15 cm³ of methanol.
 - **Step 5** Collect the solid cholesteryl benzoate by suction filtration. Rinse the flask and the crude crystals with a little cold methanol.
 - **Step 6** Recrystallize the cholesteryl benzoate using ethyl ethanoate as the solvent.

Some physical data for the chemicals involved are shown below.

	Molar mass / g mol ⁻¹	Density / g cm ⁻³	Melting temperature / K	Boiling temperature / K
Cholesterol	386.7			633
Benzoyl chloride	140.6	1.21		470
Cholesteryl benzoate	490.8		423	
Pyridine	79.1			388
Ethyl ethanoate	88.1		190	350

(a) Suggest the apparatus you would use to measure the volume of benzoyl chloride.

(1)

(b) The warning symbols on a bottle of benzoyl chloride are shown below. Write the meaning of each symbol in the space provided.

(2)

(c)	1 mol of cholesterol reacts with 1 mol of benzoyl chloride to form 1 mol of cholesteryl benzoate.	
	(i) Determine which reactant is in excess by calculating how many moles of cholesterol and of benzoyl chloride are used in the preparation.	(3)
	(ii) Calculate the percentage yield when 0.65 g of cholesteryl benzoate is obtained.	(2)
(d)	Suggest how the mixture is cooled in Step 4 .	(1)
(e)	Suggest why methanol is added to the cooled mixture in Step 4 .	(1)

	(5)
g) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	5 ?
y) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	steryl benzoate crystals in Step 6 5 ?
g) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	5 ?
I) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	5 ?
) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	5 ?
g) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	5 ?
I) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	(2)
J) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	(2) (Total for Question 4 = 17 marks)
n) How would you show that the recrystallized chole are purer than the crude crystals obtained in Step	(2) (Total for Question 4 = 17 marks)

The Periodic Table of Elements

6 8	6 0 0 m	9 5 0 5	6. L 0 8	5 con	ε. σ ε 4	[222] Rn radon 86	
0 (8)	4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	rted
7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	been repo
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have ıticated
2	(15)	14.0 N nitrogen 7	31.0 P	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	atomic nur but not fu
8	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium §	114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
			(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg Rg entgenium 111
			(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[268] [271] [272]
			(6)	58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	Mt Mt lost
	1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium n
			(7)	54.9 Mn manganese 25		Re Re rhenium 75	[264] Bh bohrium 107
		nass Iol	(9)	52.0 Cr chromium r 24	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 52.0 V Cr vanadium chromium 23 24	92.9 Nb niobium n	180.9 Ta tantalum 73	[262] Db dubnium s 105
		relativ ator atomic ((4)	47.9 Ti titanium	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104
			(3)	Sc scandium 21	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium n 89
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium la	[226] Ra radium 88
-	(1)	6.9 Li lithium 3	23.0 Na sodium	39.1 K potassium 19	85.5 Rb rubidium 37	Cs Cs caesium 55	[223] Fr francium 87

^{*} Lanthanide series

^{*} Actinide series

	144	[147]	150	152	157	159	163	165	167	169	173	175
ž	ъ	Pm	Sm	Eu	В	Ъ	ò	운	Ę	Ę	Х	Ľ
)eod	minm	promethium	samarinm	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	9	61	62	63	64	65	99	29	68	69	70	71
ı	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
	_	ď	Pu	Am	E S	쌇	ង	Es	Fm	ΡW	8	ځ
_	raninm	neptunium	plutonium	americium	aurium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	92	93	94	95	96	67	86	66	100	101	102	103